自貿網|自由貿易網
 
 
發布信息當前位置: 首頁 » 供應 » 儀器儀表 » 專用儀器儀表 »

3D肌腱韌帶應力培養測試系統

點擊圖片查看原圖
品牌: 世聯博研
單價: 面議
起訂:
供貨總量:
發貨期限: 自買家付款之日起 天內發貨
所在地: 北京
有效期至: 長期有效
最后更新: 2021-01-26 16:04
瀏覽次數: 93
詢價
公司基本資料信息
 
 
產品詳細說明
3D肌腱韌帶應力培養測試系統

肌腱韌帶等各種3D細胞組織材料構建體培養與與機械特性測試雙功能系統

特色:1、刺激培養期間同時進行實時應力應變與位移關系,剛度等自動測量,力、位移、環境溫度等
2、具有材料性能測量能力和基于過程調節組織工程醫療產品的生物反應器,測量得到的結果(例如剛度)可作為培養和刺激構建物時變化過程的指標,系統根據測量結果反饋自動修改刺激配置,以減少研究人員的人工干預,自動的將構建物從初的接種狀態培養成可移植狀態.
3.測試結果一張圖實時可視化展示,一鍵生成報告。
4、可根據培養期間實時測量的反饋,調整力與電、氧氣、二氧化碳、氮氣、PH值等細胞組織生長的營養培養環境,確保細胞快速生長和繁殖的環境是理想的,實現了從長期培養到表征和評估的無縫過渡,是組織工程與再生醫學創新研究強有力的生物反應器系統。

LigaGen體外培養生物反應器可為肌腱、韌帶、水凝膠等構建物提供軸向的壓縮/拉伸應力刺激,進行細胞分化、肌腱刺激、藥物檢測等研究。生物反應器配有多種固定裝置,適用于不同的樣品,并可設定頻率、振幅和載荷等參數來實現不同的實驗設計。密封設計特,保證無菌的同時減少了阻力,使連桿可以自由運動。培養室和夾具都有多種型號,可根據實驗需要自行選擇.

- 標本長度0-30mm;
 - 約23毫升樣品室容積;
- 反應室兩面均為透明可拆卸窗口,可使用儀器進行光學監測;
- 反應室由生物惰性材料制成,可 121 C,17-20 psi高壓濕熱滅菌;
- 密封腔室采用特的波紋管設計;

另外提供可以用于包括三維軟骨、血管、肌腱韌帶、皮膚、心臟瓣膜、骨組織在內的等各種3D細胞組織材料構建體機械力加載培養與機械特性實時測量,可偶聯電刺激的各種三維構建體應力刺激培養與機械特性實時測試分析系統。

LigaGen生物反應器腔由生物惰性,可高壓滅菌的材料制成,有助于對具有大縱橫比的樣品進行振蕩壓縮/拉伸軸向刺激。腔室可以與各種構造材料一起使用,從脫細胞的肌腱和韌帶到聚合的水凝膠。腔室可容納大30×3 mm的樣品。多種抓握方式允許各種具有不同材料特性的結構受到刺激。特的密封為腔室提供機械饋通,同時在無菌環境中促進軸向運動,并且阻力小。三種不同的腔室設計允許單個樣品或多樣品刺激。所有腔室均可與灌注系統一起使用,以在樣品周圍提供對流介質傳輸。

Chamber Options
L30-1X: Single sample per chamber, 30 mm long with 23 mL compartment volume
L30-4C: Either 2 or 4 samples per chamber with 80 mL compartment volume
L150-1C: Single sample per chamber, 150 mm long with 71 mL compartment volume

BiSS bioreactors provide a controllable, 3D environment for stimulating physiological conditions in vitro. The LigaGen system imparts mechanical tension/compression to a 3D sample. Applications include investigating cell function, modulating the growth and development of engineered tissues, or acting as a test bed for drug and regenerative medicine technologies.

Chambers

Fabricated out of bioinert, autoclavable materials, the LigaGen bioreactor chamber facilitates oscillatory compressive/tensile axial stimulation to samples with a large aspect ratio. The chambers can be used with a variety of construct materials from decellularized tendons and ligaments to polymerized hydrogels. The chamber accommodates samples up to 30 × 3 mm. Multiple grip styles allow for a wide range of constructs with different material characteristics to be stimulated. A unique seal provides a mechanical feed-through to the chamber, while facilitating axial motion in a sterile environment with minimal resistance. Three different chamber designs allow either single sample or multi-sample stimulation. All chambers can be used with a perfusion system to provide convective media transport around the sample.



Grip Options

? Clamp: mechanical clamp vice grips with screw locking mechanism; allows sample to be installed in grips outside of chamber
? In Situ Integrated construct mold and porous Polymerization: grips to enable mechanical stimulation of hydrogel scaffolds
? Custom Grips: custom designed for specific scaffold textures or geometries



GrowthWorks Control System

The controller with integrated motor drives, communicates with the laptop using a network cable. GrowthWorks can be configured to run four stimulators and monitor up to 8 transducers, allowing the researcher to customize the system functionality. The controller can be customized with additional modules for applications requiring automation features or additional axes of mechanical stimulation. Simple and adaptable, the GrowthWorks provides an ideal control platform for mechanically stimulated tissue growth.

Mechanical Stimulator

The LigaGen bioreactor system includes the  tension/compression (T/C) mechanical stimulator. Featuring a 200 N linear motor, the stimulator is lightweight, compact,corrosion resistant, and compatible with most standard incubators. The TC stimulator controls both load and displacement, and can be used with any of the LigaGen bioreactor chambers.


相關文獻


PublicationsBISS TGT Bioreactor Systems in Current Literature

Patents

Instrumented bioreactor with material property measurment capability and process-based adjustment for conditioning tissue engineered medical products.US pat no 7410792. August 12, 2008

Bioreactor with plurality of chambers for conditioning intravascular tissue engineered medical products. US pat no 7348175. March 25, 2008

Cell seeding module including an apparatus and method for seeding cells on a sample or specimen. US pat no 8173420. May 8, 2012.

Peer Reviewed Publications

Angelidis IK, Thorfinn J, Connolly ID, Lindsey D, Pham HM, Chang J. Tissue Engineering of Flexor Tendons: The Effect of a Tissue Bioreactor on Adipoderived Stem cell-Seeded and Fibroblast-Seeded Tendon ConstructsJ Hand Surg Am. 2010 Sep; 35(9): 1466-72.

 
Woon Cy, Pridgen BC, Kraus A, Bari S, Pham H, Chang J. Optimization of Human Tendon Tissue Engineering: Peracetic Acid Oxidation for Enhanced Reseeding of Acellularized Intrasynovial TendonPlast Reconstrc Surg. 2011 March; 127(3):1107-17 

Woon Cy, Kraus A, Raghavan SS, Pridgen BC, Megerle K, Pham H, Chang J. Three-Dimensional-Construct Bioreactor Conditioning in Human Tendon Tissue Engineering. Tissue Eng Part A. 2011 July 1: Epublished ahead of print

Tran SC, Cooley AJ, Elder SH. Effects of a Mechanical Stimulation Bioreactor on Tissue Engineered, Scaffold-Free Cartilage. Biotechnology and Bioengineering. 2011; 108:1421-1429.Saber S, Zhang AY, Ki SH, Lindsey DP, Smith RL, Riboh J, Pham H, Chang J. Flexor Tendon Tissue Engineering: Bioreactor Cyclic Strain Increases Construct StrengthTissue Engineering A. 2010 Jun 16(6): 2085-90.

Fischer LJ, McIlhenny S, Tulenko T, Golesorkhi N, Zhang P, Larson R, Lombardi J, Shapiro I, DiMuzio P. Endothelial Differentiation of Adipose-Derived Stem Cells: Effects of Endothelial Cell Growth Supplement and Shear Force. Journal of Surgical Research. 2009 March; 152 (1):157-166. PubMed PMID 19883577.

Harris LJ, Abdollahi H, Zhang P, McIlhenny S, Tulenko T, DiMuzio PJ. Differentiation of Adult Stem Cells into Smooth Muscle for Vascular Tissue Engineering. Journal of Surgical Research. Article in Press [Epub ahead of print] September 4, 2009. PubMed PMID 19959190.

McIlhenny S, Hager ES, Grabo DJ, DiMatteo C, Shapiro IM, Tulenko T, DiMuzio PJ. Linear Shear Conditioning Improves Vascular Graft Retention of Adipose-Derived Stem Cells by Upregulation of a5?1 Integrin. Tissue Engineering Part A. 2010 Jan; 16(1): 245-255.

Klein TJ, Malda J, Sah RL, Hutmacher DW, Tissue Engineering of Articular Cartilage with Biomimetic ZonesTissue Engineering Part B. 2009 Feb 9 PubMed PMID 19203206.

Cartmell SH, Porter BD, Garcia AJ, Guldberg RE, Effects of Medium Perfusion Rate on Cell-Seeded Three-Dimensional Bone Constructs In VitroTissue Eng. 2003 Dec;9(6):1197-203.

McClure MJ, Sell SA, Ayres CE, Simpson DG, Bowlin GL. Electrospinning-aligned and random polydioxanon-polycaprolactone-silk-fibroin-blended scaffolds: geometry for a vascular matrix. Biomedical Materials. 2009; 4(5). PubMed PMID 19815970.

Mohan N, Nair PD, Tabata Y. Growth factor-mediated effects on chondrogenic differentiation of mesenchymal stem cells in 3D semi-IPN poly(vinylalcohol)-poly(caprolactone) scaffolds. J Biomed Mater Res A. 2010 Feb 2. [Epub ahead of print] PubMed PMID: 20128001.

Porter BD, Lin AS, Peister A, Hutmacher D, Guldberg RE, Noninvasive image analysis of 3D construct mineralization in a perfusion bioreactorBiomaterials. 2007 May; 28(15):2525-33. Epub 2007 Jan 26.

Sell SA, McClure MJ, Barnes CP, Knapp DC, Walpoth BH, Simpson DG, Bowlin GL. Electrospun polydioxanone-elastin blends: potential for bioresorbably vascular grafts. Biomedical Materials. 2006; 1(2).PubMed PMID 18460759.

Smith MJ, McClure MJ, Sell SA, Barnes CP, Walpoth BH, Simpson DG, Bowlin GL. Suture-reinforced electrospun polydioxanone-elastin small-diameter tubes for use in vascular tissue engineering: A feasibility study. Acta Biomaterialia. 2008 Jan;4(1):58-66. PMID 17897890.

Voge CM, Kariolis M, MacDonald RA, Stegemann JP. Directional conductivity in SWNT-collagen-fibrin composite biomaterials through strain-induced matrix alignment. J Biomed Mater Res A. 2008 Jul;86(1):269-77. PubMed PMID: 18428799.

Michael J. McClure, Scott A. Sell, David G. Simpson, Beat H. Walpoth, Gary L. Bowlin. A three-layered electrospun matrix to mimic native arterial architecture using polycaprolactone, elastin, and collagen: A preliminary study. Acta Biomaterialia. Vol. 6, Issue 7, July 2010, Pages 2422-2433.

Dr. Jan Hansmann, Florian Groeber, Alexander Kahlig, Claudia Kleinhans, Heike Walles. Bioreactors in tissue engineering--principles, applications and commercial constraints. Biotechnology Journal. Vol. 8, Issue 2, 2013. 

Johan Thorfinn, I.K. Angelidis, L. Gigliello, H.M. Pham, D. Lindsey, J. Chang. Bioreactor optimization of tissue engineered rabbit flexor tendons in vivo. The Journal of Hands Surgery. (Eur Vol.) Feb. 2012 vol. 37 no. 2 pages 109-114.

Presentations

Christopher M. Voge, Mihalis Kariolis, Rebecca A. MacDonald, Jan P. Stegemann, Directional Conductivity in Protein-Nanotube Biomaterials through Strain-Induced Matrix Alignment8th World Biomaterials Congress. Amsterdam, Netherlands, June 2008.

S Saber. Stanford University Medical Center, Department of Plastic Surgery, Flexor Tendon Tissue Engineering: Cyclic Strain Increases Construct Strength and Tendon Architecture. Plastic Surgery Research Council. Springfield, Illinois, May 2008. Also presented at the California Society of Plastic Surgeons, Dana Point, California, June 2008.

BD Porter, A Peister, D Hutmacher, RE Guldberg, Dynamic Culture Conditions Modulate Mineralization Matrix Deposition, Growth Rate, and Particle Size Within Large 3-D Constructs. Transactions of the 2006 Summer Bioengineering Conference, Amelia Island, Florida, June 2006.

BD Porter, A Peister, D Hutmacher, RE Guldberg, In Vitro Perfusion Accelerates the Rate of Mineralized Matrix Formation Within 3-D Constructs by Increasing both the Number and Size of Mineralization Sites. Transactions of the 52nd Annual Orthopaedic Research Society, Chicago, Illinois, March 2006.

BD Porter, Roger Zauel, D Hutmacher, RE Guldberg, D Fyhrie, Perfusion Significantly Increases Mineral Production Inside 3-D PCL Composite Scaffolds. Regenerate International Conference and Exposition, Atlanta, Georgia, June 2005. Also presented at the American Society for Mechanical Engineering Summer Bioengineering Meeting, Vail, Colorado, June 2005. Also presented at Transactions of the 51st Annual Orthopaedic Research Society Meeting, Washington, D.C., February 2005.

Posters

S.E.McIlhenny, D.J.Grabo, N.A. Tarola, P.Zhang, I.M.Shapiro, T.N.Tulenko, and P.J.DiMuzio,  Shear Conditioning of Adipose-Derived Stem Cells Increases Retention on Decellularized Vein GraftsBiomedical Engineering Society Meeting, Los Angeles, California, September 2007.

Whitlock, Patrick, Knutson, James, Smith, Thomas L., Van Dyke Mark E., Shilt, Jeffrey S., Koman, L. Andrew, Poehling, Gary G., Effects of Mechanical Stimulation on a Cell-Seeded Scaffold Developed for Tendon and Ligament RegenerationTransactions of the 6th Combined Meeting of the Orthopaedic Research Society, Honolulu, Hawaii, October 2007. Also presented at the Transactions of the 54th Annual Orthopaedic Research Society Meeting, San Francisco, California, March 2008.

Mechanical Stimulation in the Literature

Reviews

Barrilleaux, B., et al. 2006. Tissue Engineering. "Review: of Ex Vivo Engineering of Living Tissues with Adult Stem Cells." Oct 1 (on line publishing).

Bilodeau, K. and  Mantovani, D. 2006. Tissue Engineering. "Bioreactors for tissue engineering focus on mechanical constraints, A comparative review." Aug: 12 (8) 2367-83.

Ratner, B., et al. 1996. Biomaterials Science: An Introduction to Materials in Medicine. Academic Press. San Diego, CA.

Wendt, D., et. al. . 2006. Biorheology. "Uniform tissues engineered by seeding and culturing cells in 3D scaffolds under perfusion at defined oxygen tensions." 43 (3-4): 418-488.

Mcllhenny, S., et al. 2009. Tissue Engineering. "Linear Shear Conditioning Inproves Vascular Graft Retention of Adipose-Derived Stem Cells by Upregulation." Sept. 21 (15).

Juliane Rauh, Falk Milan, Klaus-Peter Gunther, and Maik Stiehler. Tissue Engineering. "Bioreactor Systems for Bone Tissue Engineering." August 2011, 17(4): 263-280.

Bone

Braccini, A. et al. 2005. Stem Cells. "Three-dimensional perfusion culture of human bone marrow cells and generation of osteoinductive grafts." Sep 23 (8): 1066-72.

Shawn Pl Grogan, Sujata Sovani, Chantal Pauli, Jianfen Chen, Andreas Hartmann, Clifford W. Colwell Jr., Marin K. Lotz, and Darryl D. D"Lima.  "Effects of Perfusion and Dynamic Loading on Human Neocartilage Formation of Alginate Hydrogels." Tissue Engineering Part A. September 2012, 18(17-18): 1784-1792.

Vascular

Bouhout S, Perron E, Gauvin R, Bernard G, Ouellet G, Cattan V, Bolduc S. "InVitro Reconstruction of an Autologous, Watertight, and Resistant Vesical Equivalent." Tissue Eng Part A. 2010 Feb 11. [Epub ahead of print] PubMed PMID:20014996.

Shinoka, T. 2002. Artificial Organs. "Tissue Engineered Heat Valves: Autologous Cell Seeding on Biodegradable Polymer Scaffold." 26(5): 402-406.

Yow, K.H., et al. 2006. British Journal of Surgery. "Tissue engineering of vascular conduits." 93(6): 652-661.

Hao-Fan Peng, Jin Yu Liu, Stelios T. Andreadis, and Daniel D. Swartz. "Hair Follicle-Derived Smooth Muscle Cells and Small Intestinal Submucosa for Engineering Mechanically Robust and Vasoreactive Vascular Media." Tissue Engineering Part A. April 2011, 17(7-8): 981-990.  

Stem Cell

Willenberg, B.J., et al. 2006. Journal of Biomaterials Res A. "Self-assembled copper-capillary alginate gel scaffolds with oligochitosan support embryonic stem cell growth." 79(2): 440-50.

M.J. Moreno, A. Ajji, D. Mohebbi-Kalhori, M. Rukhlova, A. Jadhizadeh, M.N. Bureau. Journal of Biomaterials Res B. "Development of a compliant and cytocompatible micro-fibrous polyethylene terephthalate vascular scaffold." Vol. 97B, Issue 2, pages 201-213, May 2011.

Scaffolds

Scheindler, M., et al. 2006. Cell Biochemistry and Biophysics. Living in three dimensions: 3D nano structured environments for cell culture and regenerative medicine. 45(2):215-27.

Zahir, N. and Weaver, V.M. 2004. Current Opinion in Genetics and Development Death in the third dimension: apoptosis regulation and tissue architecture.. 14(1): 71-80.

Zhang, S., et. al. 2005. Seminars in Cancer Biology. Designer self –assembling peptide nanofiber scaffolds for 3D tissue cell cultures. 15(5): 413-20.

Jones, D., et. al. 2009. A Versatile Approach to Scaffold Design for Bone in Growth Structures. Clinical Engineering, School of Clinical Sciences, University of Liverpool, UK

Drug Development

Andrei, G. 2006. Antiviral Research. Three-dimensional culture models for human viral diseases and antiviral drug development. 71(2-3): 96-107.


肌腱韌帶機械力刺激系統,生物反應器構建組織工程肌腱系統,組織工程化肌腱構建生物反應器,肌腱生物反應器,肌腱韌帶生物反應器,3D肌腱韌帶細胞組織培養系統,Ligagen L30-series,三維肌腱韌帶細胞培養與測試系統,三維肌腱力學刺激培養測試系統,肌腱韌帶機械加載培養


目錄#07152 N2補品-A http://www.chem17.com/st450652/product_35007843.html
MechanoCulture TR http://www.chem17.com/st420642/product_35418883.html
Kord 3044現貨促銷 http://www.chem17.com/st420642/product_35478917.html
Kord 65x15mm培養碟現貨促銷 http://www.chem17.com/st421508/product_35443857.html
貨號:200103002 GrowDex-T 2.5毫升水凝膠 http://www.chem17.com/st450652/product_34943616.html
0條 [查看全部]  相關評論
 
更多»本企業其它產品

[ 供應搜索 ]  [ 加入收藏 ]  [ 告訴好友 ]  [ 打印本文 ]  [ 違規舉報 ]  [ 關閉窗口 ]

 
主站蜘蛛池模板: 富平县| 新密市| 前郭尔| 镇远县| 宁武县| 墨玉县| 东丰县| 大化| 兴安县| 吉林省| 本溪市| 隆子县| 南昌市| 黄陵县| 古田县| 沅陵县| 房山区| 珲春市| 泉州市| 西乌珠穆沁旗| 那坡县| 宜良县| 黄龙县| 霍州市| 滨海县| 伊春市| 绍兴市| 寿阳县| 桐庐县| 桑植县| 永福县| 厦门市| 清水河县| 白山市| 曲麻莱县| 息烽县| 德州市| 涿州市| 托克逊县| 湖北省| 闵行区|